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Abstract— The Wigner-Ville Hough transform (WVHT) has
been applied to detect and estimate the parameters of linear
frequency-modulated continuous-wave (LFMCW) low probabil-
ity of intercept (LPI) radar waveforms. The WVHT, which is
optimal for a single linear frequency modulated (LFM) signal,
becomes sub-optimal when applied to LFMCW signals since the
observed waveform is composed of concatenated LFM pulses.
We formulate the detection and estimation problem to take into
account the multiple pulses that are available in an observation
interval at the intercept receiver. The new algorithm, called the
periodic WVHT (PWVHT), is shown to significantly outperform
the WVHT for LFMCW signals.

I. INTRODUCTION

In electronic warfare, knowledge of enemies’ electronic
capabilities is desired. Electronic warfare includes the inter-
ception and analysis of radar signals (ELINT) to determine
information about their capabilities [1]. The general process of
ELINT includes a detection and estimation stage in which the
sensor decides whether signals of interests (SOIs) are present
and, if they are, estimates their parameters, such as the carrier
frequencies and pulse durations. The main topic of this paper
is the detection and parameter estimation of linear-frequency-
modulated continuous wave (LFMCW) radar signals.

Various signal-processing techniques have been investigated
for the detection and estimation of low probability of intercept
(LPI) radar signals [2]–[6], including LFMCW signals. (For a
detailed discussion of LPI radar signals, see [7]). In general,
the detection and estimation of linear FM (LFM) signals has
been well studied in the literature. One of the most prominent
techniques is the Wigner-Ville Hough Transform [8], [9]. The
Wigner-Ville Hough transform (WVHT), the Hough transform
(HT) of the Wigner-Ville distribution (WVD), has been shown
to be equivalent to the generalized likelihood ratio test (GLRT)
and maximum likelihood estimator (MLE) (i.e., it is asymptot-
ically optimal) in detection and estimation of an LFM signal
[10]. A sawtooth LFMCW signal is a periodic extension of an
LFM signals, i.e., the frequency within a modulation period
of an LFMCW radar signal changes linearly, as illustrated in
Figure 1. The WVHT is not optimal for the detection and
estimation of LFMCW radar signals since they are not LFM
when we consider the whole observation time.

In radar signal interception, the observation time can be
controlled to the advantage of the intercept receiver: by having
a longer observation time, more pulses are available within
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Fig. 1. Available LFMCW radar signal within an observation time Tobs

the observation signal and thus there is more energy available
for detection. Intuitively, the detection and estimation perfor-
mance ought to improve as the observation time is increased.
Unfortunately, this is not the case with the WVHT, since it is
tailored for LFM signals.

In this paper we present a detection and estimation tech-
nique named the periodic WVHT (PWVHT) that is optimal for
LFMCW signals. The algorithm is similar to the WVHT ex-
cept that it searches for patterns, such as a sawtooth waveform,
in the time-frequency (TF) image. It is thus able to accumulate
signal energy over the entire observation interval, unlike the
traditional WVHT. The PWVHT is shown to outperform the
WVHT applied to a LFMCW signal.

II. INTERCEPTOR FOR LFMCW SIGNALS

We assume that the signal processing block in the intercep-
tor is presented with a noisy discrete-time observation signal
r[n], n = 0, 1, ..., N − 1, where N is the number of samples.
If SOIs are present, these bandpass continuous LFMCW radar
signals are denoted as s′(t). Let s(t) be the signal s′(t) down-
converted to a known intermediate frequency, which is then
sampled with sampling period Δ (sec).

The LFMCW radar signal can be written as

s(t) = Aej(ϕ+2πfit+πgmod(t+τ,T )2), (1)

where A is the amplitude, fi (Hz) is the initial frequency after
down-conversion, and g = B

T (Hz
sec ) is the chirp-rate, where B

(Hz) is the bandwidth, τ (sec) is an initial time-offset, and
T (sec) is the modulation period. The symbol ϕ represents
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the initial phase, which is distributed uniformly U(−π, π),
and mod(t, T ) is a shorthand notation for (t modulo T ). The
observation time t (sec) at the intercept receiver is bounded by
Tobs, i.e., 0 ≤ t ≤ Tobs. A time vs. frequency (t, f ) illustration
of the LFMCW radar signal s(t), along with its parameters is
given in Figure 1.

The discrete-time LFMCW radar signals that may be present
in r[n] can be written as s[n] = s(t) |t=nΔ. Given a noisy
observation signal r[n], the decision problem is to decide
whether hypothesis H0 or H1 is true, where

H0 : r[n] = w[n] (2)

H1 : r[n] = s[n] + w[n] (3)

The noise w[n] is zero-mean, stationary, complex white Gaus-
sian, i.e., N (0, σ2

w). If the decision is that hypothesis H1

is true, then an estimate of the true parameter vector Ω =
(fi, g, T, τ) is desired. The amplitudes and phases of the
signals are considered nuisance parameters.

III. PERIODIC WIGNER-VILLE HOUGH TRANSFORM

The crucial drawback of the WVHT when used for the de-
tection and estimation of LFMCW radar signals at the intercept
receiver is that there no longer is gain in performance when
the observation time is increased. In this section we introduce
the periodic Wigner-Ville Hough transform (PWVHT), which
is based on the WVHT but tailored to LFMCW signals. The
transformation from the time and frequency (t, f) domain
to the initial frequency and chirp rate (f̃ , g̃) domain in the
WVHT is done by summing over straight lines, parameterized
by (f̃ , g̃), in the WVD. For an arbitrary signal x[n] it can be
written as

Wx[n, f) = 2
∞∑

k=−∞
Cxx[n, k]F (f, k], (4)

where F (f, k] = e−j4πfkΔ is the matching function,
Cxy[n, k] = x[n+k]y∗[n−k] is the instantaneous discrete time
cross-correlation, and the symbol “∗” stands for the complex
conjugate. The WVD is basically the Fourier transform of
the instantaneous auto-correlation function with respect to k.
For a single LFM signal s[n] = Aej(ϕ+2πfit+πgt2) |t=nΔ,
the instantaneous auto-correlation function is Css[n, k] =
A2ej4πkΔ(fi+gnΔ). Thus, the WVD of an LFM signal is

Ws[n, f) =
∞∑

k=−∞
A2e−j4πkΔ(f−fi−gnΔ). (5)

Notice that each term in the WVD is maximized only when
it is evaluated at the signal parameters f = fi + gnΔ at any
given time n since the exponential terms cancel out.

The WVHT can be written as

WHx[f̃ , g̃] =
N/2−1∑

n=0

n∑
k=−n

Cxx[n, k]F (f̃ + g̃nΔ, k]

+
N−1∑

n=N/2

N−1−n∑
k=−(N−1−n)

Cxx[n, k]F (f̃ + g̃nΔ, k]. (6)

Therefore, the discrete WVHT of a discrete LFM signal is

WHs[f̃ , g̃] =
∑

n

∑
k

A2e−j4πkΔ((f̃−fi)+(g̃−g)nΔ) (7)

and is maximized only when evaluated at f̃ = fi and g̃ = g,
which results in

WHs[fi, g] =
N2A2

2
. (8)

It can be seen that the canceling of complex exponentials in
(5) and (7) when evaluated at the signal parameters is a key
in detection and estimation of an LFM signal by the WVHT.

In the case of an LFM signal, F (f, k] and Cxx[n, k] are
a good match. The Hough transformation involves integrating
the WVD along the frequency law pattern of the signal in the
TF plane for all the possible values for the parameters, and
only at the correct signal parameters is the sum maximized,
which is equivalent to when F (f, k] completely cancels out
the exponential term in Cxx[n, k].

The WVHT is capable of detecting and estimating LFM
signals even when more than one signal is present, as seen
in Figure 2 where three LFM signals are processed, yet it
is not optimal for more than one LFM signal. The main
reason is that the matching function cannot completely remove
the exponential term in Cxx[n, k]. For instance, the discrete
instantaneous auto-correlation of a noise-free observation r[n]
consisting of two LFM signals s1[n] and s2[n] is

Crr[n, k] = Cs1s1 [n, k] + Cs2s2 [n, k]
+Cs1s2 [n, k] + Cs2s1 [n, k] (9)

and it is easy to see that F (f, k]|f=f̃+g̃n cannot completely
eliminate the exponential terms in (9). When the value of f
in F (f, k] matches one of the signal parameters, it cancels
out one of the exponential term, either in Cs1s1 [n, k] or
Cs2s2 [n, k], yielding prominent peaks in (6). It also shows why
it is sub-optimal since F (f, k] can only cancel one exponential
term at a time. Thus, the WVHT of M LFM signals yields M
peaks, which need to be searched by a peak finding algorithm.

The WVHT applied to LFMCW signals is also sub-optimal
because the matching function F (f, k] cannot completely
cancel out the exponential terms in (6) when multiplied with
the instantaneous auto-correlation function Cxx[n, k] of an
LFMCW radar signal, i.e., they are not a good match. For
an LFMCW radar signal

s[n] = Aej(ϕ+2πfi(nΔ)+πgmod(nΔ+τ,T )2). (10)

The instantaneous auto-correlation function is

Css[n, k] = A2 exp{jπ(4fikΔ
+g[mod((n+k)Δ+τ, T )2−mod((n−k)Δ+τ, T )2])}.(11)

Thus, the WVHT in (6) results in

WHs[f̃ , g̃] =
∑

n

∑
k

A2 exp{jπ(4(fi−f̃−g̃n)kΔ

+g[mod((n + k)Δ + τ, T )2 − mod((n − k)Δ + τ, T )2])},
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Fig. 2. WVD and WVHT parameterized by (f̃ , g̃) of a single LFMCW signal formed by three LFM pulses. Noise-free: (a) WVD, (b) WVHT. Noisy with
SNRi = −10 dB: (c) WVD, (d) WVHT. In this and subsequent figures, the frequency is normalized by 1/Δ, the modulation period and time offset by Tobs,
and the chirp-rate by the maximum chirp-rate searched.

and the exponentials do not cancel out for any values of f̃ and
g̃. Thus, the summation results in a smaller peak.

The optimal algorithm for one LFMCW signal uses a match-
ing function that can completely cancel out the exponential
terms when multiplied with (11). We define the PWVHT of
an arbitrary complex sequence x[n], n = 0, 1, ..., N − 1 to be

Zx[Ω̃] =
N/2−1∑

n=0

n∑
k=−n

Cxx[n, k]Fn,k[Ω̃] +

N−1∑
n=N/2

N−1−n∑
k=−(N−1−n)

Cxx[n, k]Fn,k[Ω̃], (12)

where Ω̃ = (f̃ , g̃, T̃ , τ̃). We assume that N is even and the

matching function is

Fn,k[Ω̃] = exp{−jπ(4f̃kΔ + g̃[mod((n + k)Δ + τ̃ , T̃ )2 −
mod((n − k)Δ + τ̃ , T̃ )2])}, (13)

which, when evaluated at the true signal parameters Ω̃ = Ω =
(fi, g, T, τ), is the complex conjugate of the exponential term
of (11). The PWVHT is optimal as it is equivalent to the GLRT
and the estimates it yields are MLE.

For an LFMCW radar signal at the intercept receiver, the
peak of the PWVHT is achieved at the signal parameters Ω.
For instance, if we substitute the LFMCW signal in (10) into
(12), and evaluating it at the true signal parameters, it yields
Zs[Ω] = N2A2

2 , which is the maximum and equal to (8). For
other values, i.e., Ω̃ �= Ω, the matching function does not
cancel out the exponential terms, resulting in a smaller value.
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Fig. 3. Slices of Zr[Ω̃] of a noisy LFMCW signal in Figure 2: (a) slice at
the true modulation period and time offset of the signal, (b) slice at the true
initial frequency and chirp rate of the signal. SNRi = −10 dB.

IV. SIMULATION RESULTS AND ANALYSIS

To illustrate the performance of the PWVHT, Z[Ω̃], we
apply it to the simulated LFMCW radar signal shown in
Figure 2. When the PWVHT of the noisy signal is evaluated,
a prominent peak appears, as seen in Figure 3, where slices
of the Z[Ω̃] are shown. The right half of Figure 3(b) is
smooth because only time offsets less than the modulation
periods need to be searched. Each plot indicates a peak,
revealing the correct number of signals (one instead of three).
In addition, the location of the peak gives an estimate of the
signal parameters. The detection and parameter estimation of
the LFMCW signals can then be achieved by searching for
peaks in the Ω̃ domain.
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Fig. 4. ROC plot of the PWVHT and the WVHT for a single LFMCW
signal, using N = 330 and Tm = 110Δ (3 concatenated LFW signals)

The output SNR can be canculated to be

SNRPWV HT =
N2

2

(
A2

σ2
w

)2

N A2

σ2
w

+ 1
=

N2

2 SNR2
i

NSNRi + 1
. (14)

This is a remarkable result because when the input SNR is
high, (SNRi = A2

σ2
w

>> 1), the output SNR is approximately

SNRPWV HT = NSNRi

2 , which indicates that it is almost as
good as a matched filter’s output SNR (SNRMF = NSNRi),
but with approximately 3 dB loss due to quadratic detection.
Most importantly, when the input SNR is very low (SNRi <<
1), detection can still be accomplished by increasing number
of samples N and benefiting from processing gain. Not
surprisingly, the PWVHT is equivalent to the GLRT and the
MLE for an LFMCW radar signal at the intercept receiver.
The detection performance of the PWVHT is shown using a
received operating characteristic (ROC) plot in Figure 4. The
probability of detecting a simulated LFMCW signal using the
PWVHT is compared to the same metric using a standard
WVHT for two input SNR values, as the probability of false
alarm varies. The LFMCW algorithm is clearly superior to
the WVHT, as predicted since the signal is LFMCW and not
purely LFM.

Although the PWVHT is superior to the WVHT for detec-
tion and estimation of a signal that is composed of multiple
LFM signals, the improved performance comes at a cost
in computational complexity. However, for LPI application,
the PWVHT is realizable. For detection and estimation of
LFMCW radar signal, the search is usually bounded, i.e.,
there is a priori knowledge about the range of possible initial
frequencies, chirp-rates, and modulation periods, which allows
one to restrict the search in the parameter space and reduce
the amount of computations.
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V. CONCLUSION

In this paper we present a new signal processing technique,
the PWVHT, for detection and estimation of a LFMCW radar
signal. Within an observation session at an intercept receiver,
the received signal is composed of multiple LFM pulses if an
SOI is present. Currently available techniques are suboptimal
since they are tailored for the detection and estimation of a
single pulse. The PWVHT technique is equivalent to the GLRT
and MLE for an LFMCW radar signal, and thus provides an
optimal solution. The improvement in performance comes at
a cost in computational complexity.

The idea in the PWVHT can be extended to other signal
types (i.e., other signals composed of multiple LFM pulses)
by designing a matching function that can completely remove
the exponential term when multiplied with its instantaneous
auto-correlation function. This warrants further research.
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